
Received: 4 September 2020 Accepted: 25 November 2020 Published online: 17 February 2021

DOI: 10.1002/agj2.20548

A R T I C L E

B i o m e t r y , M o d e l i n g , a n d S t a t i s t i c s

Simulated climate change effects on soybean production using two
crop modules in RZWQM2

L. Ma1 Q. X. Fang2 M. W. Sima3 K. O. Burkey4 R. D. Harmel5

1 Rangeland Resources and Systems

Research Unit, USDA-ARS, Fort Collins,

CO 80526, USA

2 Agronomy College, Qingdao Agricultural

Univ., Qingdao 266109, China

3 Dep. of Civil and Environmental

Engineering, Princeton Univ., Princeton, NJ

08544, USA

4 Plant Science Research Unit, USDA-ARS,

Raleigh, NC 27695, USA

5 Center for Agricultural Resources

Research, USDA-ARS, Fort Collins, CO

80526, USA

Correspondence
Liwang Ma, USDA-ARS, Rangeland

Resources and Systems Research Unit, Fort

Collins, CO, USA.

Email: Liwang.Ma@usda.gov

Abstract
The ability to predict climate change effects on crop yield through field experiments

and crop modeling is essential for developing mitigation strategies. The objective of

this study was to compare two different crop modules (CROPGRO and HERMES)

in the Root Zone Water Quality Model 2 (RZWQM2) for predicting climate change

effects on soybean [Glycine max (L.) Merr.] production. The modules were previ-

ously calibrated for measured temperature responses using data from a 4-yr open-top

chamber experiment (2015–2018) in North Carolina. Both crop modules simulated

similar climate change effects in terms of yield and biomass by the end of Year 2100

(2083–2099) using 40 general circulation model (GCM) projections and two Repre-

sentative Concentration Pathways (RCP4.5 and RCP8.5), compared with the simu-

lations using current baseline (2002–2018). For both modules, much greater reduc-

tions in biomass and seed yield were simulated under RCP8.5 than under RCP4.5

due to higher air temperature. In addition, both modules predicted lower variability

of biomass and seed yield across these GCMs under irrigated than under rainfed con-

ditions. CROPGRO predicted a greater positive climate change effect in response to

the projected higher precipitation and increased atmospheric CO2 (compared with

baseline conditions) than HERMES. Soybean production will likely benefit more

from the projected high precipitation and elevated CO2 under rainfed conditions than

under irrigated conditions. Due to much higher simulated yield under irrigation than

under rainfed conditions, supplementary irrigation may be an effective mitigation

strategy to maintain soybean yield; however, adjusting sowing dates appear to have

little effect on soybean production.

1 INTRODUCTION

Crop models have been used for more than two decades to

simulate climate change effects on soybean [Glycine max (L.)

Merr.] production and develop adaptive strategies (Alexan-

drov & Hoogenboom, 2000; Lal et al., 1999). In general,

Abbreviations: ET, evapotranspiration; GCM, general circulation model;

RCP, Representative Concentration Pathways; RZWQM, Root Zone Water

Quality Model; WS, water stress.
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elevated high air temperature decreases seed yield and ele-

vated CO2 in the atmosphere increases soybean yield (Hat-

field et al., 2011; Heinemann et al., 2006). One of the most

used crop models for such analyses is the Decision Support

System for Agrotechnology Transfer (DSSAT)-CROPGRO-

Soybean model; however, simulated results are mixed among

cultivars and locations (Rolla et al., 2018). In Argentina, Rolla

et al. (2018) concluded that soybean yield would increase due

to projected high precipitation during growing seasons for
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RCP4.5 (>32%) and RCP8.5 (>50%) under the near (2015–

2039) and the far (2075–2099) future based on the CCSM4

climate model and CROPGRO-Soybean crop model. Lal et al.

(1999) also simulated higher soybean yields in future cli-

mates due to high CO2 concentration in the atmosphere and

found that an increase of 3 ˚C in air temperature would can-

cel the “fertilization” effect of doubling CO2 to 660 ppm

in the atmosphere. They also noticed that CO2 levels would

affect photosynthesis more than transpiration due to stom-

atal closure. Similar soybean responses to climate change

were reported by Wang, Qi, Xue, Bukovsky, and Helmers

(2015); Bao, Hoogenboom, McClendon, and Urich (2015);

and Bao, Hoogenboom, McClendon, & Paz (2015). Rela-

tive yield increase was higher under rainfed conditions than

under irrigated conditions (Bao, Hoogenboom, McClendon,

& Urich, 2015). However, projected crop yield under irri-

gated conditions had lower annual variability than under rain-

fed conditions (Ma et al., 2017; Sohoulande, Stone, Szogi, &

Bauer, 2019).

On the other hand, Mall, Lal, Bahatia, Rathore, and

Singh (2004) predicted that CROPGRO soybean yield would

decrease in India at elevated air temperature and doubled CO2

concentration. Similarly, Carbone et al. (2003) simulated

considerable soybean yield decrease in southeastern United

States. Also, Eulenstein et al. (2017) stated that soybean

yield would decrease in 2071–2100 regardless of climate

circulation models (GCMs). These discrepancies in soybean

yield responses to climate change may be due to differences

in projected temperature and precipitation as well as cultivar

parameters (Bao, Hoogenboom, McClendon, & Paz, 2015).

Several research projects have compared soybean models.

Battisti, Sentelhas, and Boote (2017) compared five soybean

models (FAO-Agroecological Zone; AQUACROP, CROP-

GRO, APSIM, MONICA) and found that they all predicted

similar yields; however, an ensemble of all the models reduced

simulation error by half. Later, Battisti et al. (2018) used the

ensemble of APSIM, CROPGRO, and MONICA to project

climate change effects and identify adaptation strategies to

maintain high soybean yield, including supplementary irriga-

tion, advancing sowing date, adopting maturity group close

to 8, and increasing plant density to 50 plants m–2. Jing et al.

(2017) showed that CROPGRO simulated a 14% increase in

soybean yield in the near future (2041–2070) but a decrease

in distant future (2071–2100), whereas the STICS model

estimated a decrease in both near and distant future under

RCP8.5. Wolf (2002a, 2002b) compared CROPGRO and

SOYBEANW models for simulated climate change effects

after calibration and found that the models responded differ-

ently to irrigation management depending on locations. How-

ever, in Wolfe et al. (2002a, 2002b) the models were inde-

pendently applied, thus the results reflected differences not

only in crop models but also in other model components such

as soil water. Thus improved prediction of soybean produc-

Core Ideas
∙ Two crop modules were used to predict climate

change effects on soybean.

∙ Both crop modules simulated similar climate

change effects on yield and biomass.

∙ Greater reductions in biomass/yield were simu-

lated due to higher air temperature.

∙ CROPGRO predicted a greater positive climate

change effect than HERMES.

tion under future climate scenarios is needed to guide man-

agement responses.

The most commonly tested adaptation strategies for soy-

bean production are sowing date, cultivar selection, plant

density, and irrigation management (Alexandrov & Hoogen-

boom, 2000; Battisti et al., 2018; Rolla et al., 2018). Sow-

ing date may be delayed (Balvanshi & Tiwari, 2019; Bao,

Hoogenboom, McClendon, & Urich, 2015; Mall et al., 2004)

or advanced (Battisti et al., 2018; Wolf, 2002a, 2002b) for

favorable soybean yield, depending on the location. Selection

of crop cultivars for adaptation depends on maturity group but

also on irrigation management (Bao, Hoogenboom, McClen-

don, & Paz, 2015). Irrigation would increase soybean yield

compared to rainfed (Wolf, 2002b; Battisti et al., 2018), and

increasing plant population would also mitigate the negative

effects of high air temperature (Battisti et al., 2018).

Therefore, the objectives of this study were to investigate

two soybean modules (CROPGRO and HERMES) in the Root

Zone Water Quality Model 2 (RZWQM2) for their ability

to simulate climate change effects under irrigated and rain-

fed conditions from 2083–2099 using 40 GCM projections

available for the experimental site and two RCPs (RCP4.5

and RCP8.5) based on previously calibrated model parame-

ters (Sima et al., 2020), and to develop potential mitigation

strategies by irrigation and sowing date management by com-

paring to a 17 yr baseline run from 2002–2018 when measured

weather data were available. This study is unique because it

is the only one that contains 40 GCM projections and two

crop modules and that the plant parameters were calibrated

based on experiments at elevated air temperature in open-top

chambers.

2 MATERIALS AND METHODS

2.1 Model overview

The RZWQM2 is a process-based system model that sim-

ulates soil water balance, potential evapotranspiration, soil
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carbon/nitrogen dynamics, soil heat flux, surface energy bal-

ance, soil erosion, and plant growth (Ma et al., 2012). Soil

water infiltration during rainfall or irrigation is simulated with

the Green–Ampt equation, and water redistribution is calcu-

lated by solving the Richards’ equation for pressure head.

The Brooks–Corey soil water retention curve is used to con-

vert between water pressure head and soil water content.

The Shuttleworth–Wallace equation is used to estimate poten-

tial evapotranspiration considering crop residue and partial

canopy cover effects (Ma et al., 2012). The model contains

multiple crop growth modules including the DSSAT suite of

crop modules (CROPGRO and CERES) and the HERMES

module (Ma, Hoogenboom, Ahuja, Nielsen, & Ascough,

2005; Sima et al., 2020). The CROPGRO has detailed sim-

ulation of soybean phenology, yield components, N2 fixation,

and environmental stresses (Boote, Jones, & Hoogenboom,

1998; Jones et al., 2003) and has been evaluated under ele-

vated CO2 conditions (Alagarswamy, Boote, Allen, & Jones,

2006). HERMES, on the other hand, uses a more simplis-

tic approach and only differentiates among shoots, leaves,

roots, and grain (Kersebaum, 1995). The simulated temper-

ature, CO2, and soil water effects on soybean growth in the

two crop modules are provided in Figure 1.

Briefly, leaf photosynthesis in CROPGRO is calculated

hourly using the equations tested by Alagarswamy et al.

(2006) but scaled up to daily canopy assimilation with the

sunlit and shaded approach (Boote & Pickering.,1994; Boote

et al., 1998).

𝐴 = 𝐴max[1 − 𝑒𝑥𝑝
−𝑄𝐸×𝑃𝑃𝐹

𝐴max ] (1)

𝐴𝑚𝑎𝑥 = LXREF × SLWMAX × TEMPMX × AGEMXL

×RE𝐶𝑂2 (2)

where A is leaf photosynthesis rate, Amax is the light satu-

rated photosynthesis rate, QE is the quantum efficiency of the

leaf, and PPF is photosynthetic photon flux. Amax is estimated

from the maximum leaf photosynthesis (LXREF) adjusted by

hourly temperature (TEMPMX), leaf nitrogen concentration

(AGEMXL), specific leaf weight (SLWMAX), and CO2 and

O2 factor (RECO2) (Pickering, Jones, & Boote, 1995).

The HERMES module uses three different algorithms

to characterize temperature effects on leaf photosynthesis

(Kersebaum, 2013). The Mitchell approach, which was used

for this study (Kersebaum & Nendel, 2014; Mitchell et al.,

1995) employs a different set of functions for temperature

effect. Maximum leaf gross photosynthesis rate (Amax) is cal-

culated by:

𝐴max =
(𝐶𝑖 − Γ∗)𝑉𝑐max

𝐶𝑖 +𝐾𝑐(1 + 𝑂𝑖∕𝐾𝑜)
(3)

Γ∗ =
0.5𝑉𝑜max𝐾𝑐𝑂𝑖

𝑉𝑐max𝐾𝑜

(4)

where Ci is the intercellular CO2 concentration (ppm), Г* is

the CO2 photosynthesis compensation point, referring to Ci in

the absence of dark respiration, Oi is the intercellular concen-

tration of O2, Vcmax and Vomax (equal to 0.21 of Vcmax) are the

maximum ribulose-1,5-bisphosphate carboxylase-oxygenase

(Rubisco)-saturated rate of carboxylation and oxygen, respec-

tively, and Kc and Ko are the Rubisco Michaelis–Menten con-

stants for CO2 and O2, respectively. The temperature depen-

dencies of Ci, Oi, Kc, Ko, and Vcmax were described by

Long (1991).

2.2 Model calibration

Both CROPGRO-Soybean and HERMES were calibrated

with a dataset from an open-top chamber experiment in

Raleigh, NC, (35.73o N, 78.69o W) from 2015 to 2018. The

top soil contains a 36 cm of sandy loam (fine, kaolinitic,

thermic Typic Kanhapludults) with approximately 62% sand,

21% silt, and 17% clay. The underlying deep clay layer (36–

100 cm) has 29% sand, 18% silt, and 53% clay (Sima et al.,

2020). Irrigation was scheduled to maintain field capacity

throughout the growing seasons to minimize water stress. The

observed seed yield, biomass, and growth stages from ambi-

ent and heated air treatments across the 4 yr were simulated

with both the CROPGRO and HERMES crop modules in

RZWQM2 that shared the same soil water routine (Sima et al.,

2020).

Soil hydraulic parameters were estimated from Rawls,

Brakensiek, and Saxton (1982) based on soil texture. The

air temperature and humidity measurements were averaged

hourly and used as model inputs to quantify weather con-

ditions for each open-top chamber. Additional weather data

(hourly rainfall, solar radiation, and wind speed) from 2015

to 2018 were obtained from an on-site weather station. Cali-

brated crop parameters for both modules are listed in Tables 1

and 2. Across the 4 yr and two treatments, average air tem-

perature was elevated by 3.4–25.7 ˚C during the growing sea-

sons for the heated treatments compared to the ambient air

treatments. As a result, measured average seed yield and final

biomass decreased by 22 and 11%, respectively, for the heated

treatments, but the elevated air temperature did not signifi-

cantly affect maturity dates. After calibration at ambient air

temperature, both CROPGRO and HERMES were able to

simulate yield and biomass reductions in heated treatments.

On average, both crop modules simulated lower reduction in

seed yield (15% for CROPGRO and 17% for HERMES) com-

pared to experimentally observed 22%. However, simulated

reduction in biomass was lower by CROPGRO (7%) than by
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F I G U R E 1 Temperature and CO2 effect (538 ppm for RCP4.5 and 936 ppm for RCP8.5) on leaf photosynthesis, respiration, and growth phe-

nology in (a) CROPGRO and (b) HERMES: (a-1) temperature effects on Amax (RECO2) and QE (QECO2); (a-2) TEMPMX effect on Amax; (a-3) overall

temperature and CO2 effect on A; (a-4) temperature effect on respiration; (a-5) temperature effect on phenology. (b-1) temperature effect on Ko/Kc
and Vcmax; (b-2) temperature and CO2 effect on Ci/Co; (b-3) overall temperature and CO2 effect on Amax; (b-4) temperature effect on respiration; (b-5)

temperature effect on phenology (Sima et al., 2020). RCP = Representative Concentration Pathways, RE = CO2 factor to leaf quantum efficiency, QE

= quantum efficiency
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T A B L E 1 Calibrated soybean cultivar parameters in CROPGRO-Soybean. (Sima et al., 2020)

Parameter Values
CSDL: Critical Short Day Length below which reproductive development progresses with no daylength effect (for

short day plants) (hour)

12.8

PPSEN: Slope of the relative response of development to photoperiod with time (positive for short-day plants)

(1/hour)

0.27

EM-FL: Time between plant emergence and flower appearance (R1) (photothermal days) 23.3

FL-SH: Time between first flower and first pod (R3) (photothermal days) 10.0

FL-SD: Time between first flower and first seed (R5) (photothermal days) 15.6

SD-PM: Time between first seed (R5) and physiological maturity (R7) (photothermal days) 45.0

FL-LF: Time between first flower (R1) and end of leaf expansion (photothermal days) 17.1

LFMAX: Maximum leaf photosynthesis rate at 30 ˚C, 350 ppm CO2, and high light, mg CO2/m2*s 2.4

SLAVR: Specific leaf area of cultivar under standard growth conditions, cm2 g−1 300

SIZLF: Maximum size of full leaf (three leaflets), cm2 250

XFRT: Maximum fraction of daily growth that is partitioned to seed + shell 0.90

WTPSD: Maximum weight per seed, 10−3 kg 0.19

SFDUR: Seed-filling duration for pod cohort at standard growth conditions (photothermal days) 32.1

SDPDV: Average seeds per pod under standard growing conditions (no. pod−1) 2.5

PODUR: Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 17.8

T A B L E 2 Calibrated soybean parameters (only development phase thermal time was adjusted in parenthesis from the default values) in the

HERMES modela. (Sima et al., 2020)

Growth phases 1 2 3 4 5 6 7
Development phase thermal time, ˚C day 88 150 568 220 470 550 25

Base temperature, ˚C 8 8 6 6 6 0 9

Day length requirements, hour 0 −12.8 −12.8 −12.8 −12.8 −12.8 0

Base day length in phase, hour 0 −22.35 −22.35 −22.35 −22.35 −22.35 0

Specific leaf area, m2 m−2 kg−1 (10−3) 1.66 1.73 2.16 2.00 1.41 2.0 2.0

Partitioning of photosynthate to roots 0.5 0.2 0.13 0.1 0 0 0

Partitioning of photosynthate to leaves 0.5 0.6 0.33 0.4 0 0 0

Partitioning of photosynthate to stems 0 0.2 0.54 0.5 0 0 0

Partitioning of photosynthate to ears 0 0 0 0 1 1 0

Leaf death rate 0 0 0 0 0.05 0.05 0.05

Root N content 0.02 0.012 0.01 0.01 0.01 0.01 0.01

aThe negative values for day length requirements and base day length in phase suggest that phenological development is delayed when days become too long.

HERMES (20%), with an ensemble reduction of 13% that

was close to observed 11% decrease. CROPGRO simulated

maturity dates were closer to experimental results than that of

HERMES. The latter advanced soybean maturity dates by as

many as 19 d at high air temperature. Across the 4 yr and two

treatments, simulation error (root mean square error, RMSE)

for seed yield was 971 kg ha−1 by CROPGRO and 814 kg ha−1

by HERMES, and that for biomass was 1,609 kg ha−1 for

CROPGRO and 1,631 kg ha−1 for HERMES. Other details

and statistics on model calibration are available in Sima et al.

(2020).

2.3 Baseline and climate change scenarios

Long-term weather data including daily solar shortwave radi-

ation, maximum and minimum air temperature, wind speed,

relative humidity, and precipitation, were obtained from the

State Climate Office of North Carolina (http://climate.ncsu.

edu/cronos/). We were only able to obtain quality controlled

data from 2002 to 2018, which served as our baseline for

climate change simulation. Missing solar radiation was esti-

mated from a nearby weather station at Clayton, NC (about

22 km Southeast of Raleigh, NC). The baseline simulations

http://climate.ncsu.edu/cronos/
http://climate.ncsu.edu/cronos/
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T A B L E 3 The 40 general circulation model (GCM) projections used in this study and their originating institutions (Brekke et al., 2013; Pierce

et al., 2015)

GCM acronym GCM source/institution
ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology,

Australia

BCC_CSM1.1 Beijing Climate Center, China

CanESM2 (1. . . 5)a Canadian Centre for Climate Modelling and Analysis, Canada

CCSM4 (1. . . 2) National Center for Atmospheric Research (NCAR), USA

CESM1[biogeochemistry (BGC)] NCAR, USA

CNRM-CM5 Centre National de Recherches Météorologiques, France

CSIRO Mk3.6.0 (1. . . 10) Queensland Climate Change Centre of Excellence and CSIRO, Australia

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ

GFDL-ESM2M GFDL, Princeton, NJ

INM-CM4 Institute of Numerical Mathematics, Russian Academy of Sciences, Russia

IPSL-CM5A-LR (1. . . 4) L’Institut Pierre-Simon Laplace, France

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France

MIROC-ESM Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and National Institute for

Environmental Studies (NIES), Japan

MIROC-ESM-CHEM JAMSTEC and NIES, Japan

MIROC5 (1. . . 3) Atmosphere and Ocean Research Institute and NIES, Japan

MPI-ESM-LR (1. . . 3) Max Planck Institute for Meteorology, Germany

MPI-ESM-MR Max Planck Institute for Meteorology, Germany

MRI-CGCM3 Meteorological Research Institute, Japan

NorESM1-M Norwegian Climate Centre, Norway

aMultiple simulation runs with different initial conditions.

were run from 2002 to 2018 under rainfed and irrigated (no

water stress) conditions, separately.

Bias-corrected and spatially disaggregated (BCSD) projec-

tions from the World Climate Research Program’s (WCRP)

coupled model inter-comparison project phase 5 (CMIP5)

were obtained from http://gdo-dcp.ucllnl.org/downscaled_

cmip3_projections/ to generate 40 GCM projections (Table 3)

for two commonly studied Representative Concentration

Pathways (RCP) (RCP4.5 and RCP8.5) by the end of

Year 2100 (Brekke, Thrasher, Maurer, & Pruittt, 2013; Pierce,

Cayan, Maurer, Abatzoglou, & Hegewisch, 2015). Each pro-

jection included maximum and minimum air temperature and

precipitation from 2083 to 2099, which was then superim-

posed onto the historical weather data of wind speed, relative

humidity, and solar radiation from 2002 to 2018. By the end

of 2100, atmospheric CO2 concentration was estimated to be

538 ppm under RCP4.5 and 936 ppm under RCP8.5 (Fu, Ha,

& Ko, 2016; IPCC, 2014; Meinshausen et al., 2011).

The projected changes in precipitation, and maximum and

minimum air temperature from 2083 to 2099 under RCP4.5

and RCP8.5 are shown in Figure 2. Precipitation was pro-

jected to increase by 22% on average for both RCP4.5 and

RCP8.5, where large increases occurred mainly in January–

March and July–August (Figure 2). Minimum and maximum

air temperature was projected to increase by 2.2 and 2.8 ˚C for

RCP4.5, and 4.6 and 4.5 ˚C for RCP8.5, respectively. Most

GCM models projected similar temperature increase among

different months for RCP4.5 and higher temperature increase

in May–October than in other months for RCP8.5 (Figure 2b,

2c). Both CROPGRO and HERMES in RZWQM2 were run

for each of the 40 GCM projections without/with elevated

CO2 concentration (i.e., maintaining at 395 ppm without ele-

vated CO2, increasing to 538 ppm and 936 ppm by 2100 for

RCP4.5 and RCP8.5, respectively) under both rainfed and irri-

gated conditions, resulting in 320 climate change scenarios (2

× 2 × 2 × 40) for each crop module.

Since the downscaled GCM projections for air temper-

ature and precipitation were used directly without further

adjustment to the specific local weather station, these pro-

jections could be biased for the particular location in this

study, depending on the weather station and methods used for

BCSD in the climate database (Sohoulande & Singh, 2016;

Sohoulande et al., 2019). However, since our goal was mainly

to compare two crop modules in simulating elevated tem-

perature effects on soybean production in combination with

elevated CO2 and irrigation, such a potential bias would not

affect our results and conclusion, especially when the baseline

and GCM projections represent the general trends in climate

change in the region. The validity of using the downscaled

weather data directly was checked by comparing measured

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/
http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/


MA ET AL. 1355

F I G U R E 2 Violin distributions for projected changes in monthly precipitation (ratio of general circulation models [GCMs] to current), minimum

air temperature (Tmin, ˚C), and maximum air temperature (Tmax, ˚C) from the 40 GCM projections under RCP4.5 and RCP8.5 compared with the current

climate condition at Raleigh, NC. The three inside lines from bottom to top of violins represent the 25th, 50th, and 75th percentiles across the 40 GCM

projections, respectively. RCP = Representative Concentration Pathways

and GCM projected weather data for Years 2002–2018. The

average GCM projected maximum and minimum temperature

was 22.48 and 10.88 ˚C for 2002–2018, respectively, which

was close to the measured averages of 22.01 and 10.72 ˚C,

respectively. Projected average annual rainfall was 119 cm,

which was also close to measured 109 cm. Therefore, the

GCM projections should be reasonable for the location. Addi-

tionally, selecting 17 yr (2083–2099) out of the 98 yr (2002–

2099) of GCM projections at the end of the century would rep-

resent a climate variability and worst scenario of agronomic

interest for management and mitigation.

3 RESULTS

3.1 Baseline simulations under rainfed and
irrigated conditions

Under rainfed condition (Figure 3a), average annual simu-

lated final biomass for 2002–2018 was slightly lower for

CROPGRO (8,093 ± 2,718 kg ha−1) than for HERMES

(8,895 ± 2,061 kg ha−1). CROPGRO simulated more than

6,588 kg ha−1 of biomass in 75% of the years, while the 75th

percentile for HERMES was 8,451 kg ha−1 (Table 4, Fig-

ure 3). Simulated biomass with irrigation (no water stress)

was also similar between the two modules, with average val-

ues of 14,011 ± 973 kg ha−1 for CROPGRO and 12,329 ±
931 kg ha−1 for HERMES (Figure 3).

While predicted biomass was very similar, average

CROPGRO-simulated seed yield (2,827± 1,562 kg ha−1) was

only 52% of that simulated by HERMES (5,416 ± 1,516 kg

ha−1) under rainfed conditions (Table 4, Figure 4). Across the

17 yr, CROPGRO predicted seed yield below 3,521 kg ha−1 in

75% of the years, while the 75th percentile for HERMES was

4,550 kg ha−1 (Figure 4). Under irrigated conditions, CROP-

GRO again simulated lower seed yield (6,276 ± 797 kg ha−1)

than HERMES (7,416 ± 701 kg ha−1). CROPGRO simulated

seed yield lower than 6,305 kg ha−1 in 75% of years, while

the 75th percentile for HERMES 7,330 kg ha−1 (Figure 4).

With adequate irrigation, both modules simulated relatively

stable soybean biomass and yield with coefficient of variation

(CV) values below 13% across the 17 yr. Under rainfed con-

ditions, CROPGRO simulated greater year-to-year variabil-

ity in both biomass (CV = 34%) and seed yield (CV = 55%)

than HERMES (CV = 23% for biomass; CV = 28% for yield)

(Figures 3 and 4). The lower seed yield simulated by CROP-

GRO was partially due to the higher sensitivity to water stress

in CROPGRO, since the modules produced very similar crop

water stress predictions (Figure 4, Table 4). This discrepancy

may be explained by the fact that CROPGRO simulated soy-

bean seed yield using more complex physiological processes

with high sensitivity to water stresses, such as accounting for

yield components of seed number and seed weight.

Average simulated physiological maturity date from 2002

to 2018 was 140 d after planting by CROPGRO and 127 d

after planting by HERMES, which were comparable with that

simulated ones for the unheated experimental treatments from

2015 to 2018 (126 d after planting for CROPGRO and 124 d

after planting for HERMES, Table 4) regardless of rainfed

and irrigated conditions (Sima et al., 2020). HERMES-

predicted physiological maturity dates showed high varia-

tion [standard deviation (SD) = 8 d] across the 17 yr under
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F I G U R E 3 Violin distributions of simulated average soybean biomass (kg ha−1) from 2083 to 2099 for the 40 general circulation model [GCM]

projections by CROPGRO (light gray) and HERMES (gray) in response to combined factors of water stress ([a and b] Irrigated [No_WS] and [c and d]

Rainfed), temperature increase (2.5 ˚C for RCP4.5 and 4.5 ˚C for RCP8.5) and CO2 levels (current CO2 level: [a and c] No_eCO2, [b and d] elevated

CO2 levels of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baseline (dots) was averaged from the simulated soybean biomass under

current climate conditions from 2002 to 2018 with CO2 level of 395 ppm in Raleigh, NC. The three inside lines from bottom to top of violins represent

the 25, 50, and 75th percentiles across the 40 GCM projections, respectively. Legend is applicable to all plots. RCP = Representative Concentration

Pathways

both rainfed and irrigated conditions (Table 4), however,

CROPGRO, showed lower variation under irrigated condi-

tions (SD = 1.7 d) than under rainfed conditions (SD = 6.9 d),

indicating a higher sensitivity of CROPGRO-simulated soy-

bean maturity dates to water stress (Ruiz-Nogueira, Boote, &

Sau, 2001).

3.2 Projected climate change simulation
under irrigated conditions

Without elevated CO2 concentration, both modules simulated

decreases in biomass and yield with much more deduction

under RCP8.5 than under RCP4.5, and more reduction sim-

ulated by HERMES than by CROPGRO (Table 4). Under

RCP4.5, CROPGRO simulated −3.3 and −5.1% reduction in

biomass and yield, respectively, whereas HERMES simulated

−11.1 and −12.7% reduction in biomass and yield, respec-

tively. Under RCP8.5, the corresponding percentages were

−8.8 and −17.3% by CROPGRO, and −24.2 and −26.1%

by HERMES, compared to the irrigated baseline scenarios.

These reductions occurred in almost all 40 GCM projections,

where more reduction in biomass and seed yield was simu-

lated by HERMES (14–30%) than by CROPGRO (4–17%)

(Table 4, Figures 3 and 4). The simulated long-term reduc-

tion was comparable with the experimental results from 2015

to 2018 (11% for biomass and 22% for seed yield) (Sima et al.,

2020).

With elevated CO2 concentration under both RCP4.5 and

RCP8.5, both modules simulated slightly higher average soy-

bean biomass (1.5–10%, Figure 3) and seed yield (0–9%,

Figure 4) under irrigated conditions, compared with the
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T A B L E 4 Simulated average soybean biomass (kg ha−1), seed yield (kg ha−1), and growth duration (GD, days) and average daily crop water

stress index (WS, higher value means less water stress) for current climate (2002–2018, normal temperature (T) and CO2 concentration [CO2]) and

further climate changes of Representative Concentration Pathways, RCP4.5 and RCP 8.5, with or without CO2 elevations by CROPGRO and

HERMES modules under rainfed and irrigated conditions (standard deviation [SD] was calculated based on the 2002–2018 current climate

simulation or across these 40 general circulation model [GCM] projections, respectively, for RCP4.5 or RCP8.5)

Climate
scenario

T/CO2
increase Water Crop module

Biomass
(mean ± SD)

Yield (mean
± SD)

GD (mean
± SD)

WS (mean ±
SD)

Baseline Normal Irrigated CROPGRO 14,011 ± 973 6,276 ± 797 141 ± 1.7 1.0 ± 0.0

HERMES 12,329 ± 931 7,416 ± 701 127 ± 8.0 1.0 ± 0.0

Rainfed CROPGRO 8,093 ± 2718 2,827 ± 1562 140 ± 6.9 0.82 ± 0.10

HERMES 8,895 ± 2061 5,416 ± 1516 127 ± 8.0 0.82 ± 0.10

RCP4.5 Increased T
only

Irrigated CROPGRO 13,540 ± 881 5,957 ± 551 137 ± 1.4 1.0 ± 0.0

HERMES 10,956 ± 826 6,469 ± 612 112 ± 4.1 1.0 ± 0.0

Rainfed CROPGRO 9,620 ± 2297 3,381 ± 1578 134 ± 4.7 0.88 ± 0.08

HERMES 8,874 ± 1689 5,048 ± 1200 112 ± 4.1 0.88 ± 0.08

Increased Irrigated CROPGRO 15,180 ± 1007 6,833 ± 647 137 ± 1.4 1.0 ± 0.0

T and CO2 HERMES 12,517 ± 904 7,418 ± 701 112 ± 4.1 1.0 ± 0.0

Rainfed CROPGRO 11,719 ± 2357 4,384 ± 1793 134 ± 4.5 0.90 ± 0.07

HERMES 10,677 ± 1733 6,152 ± 1311 112 ± 4.1 0.90 ± 0.08

RCP8.5 Increased T
only

Irrigated CROPGRO 12,768 ± 938 5,187 ± 724 139 ± 2.2 1.0 ± 0.0

HERMES 9,347 ± 934 5,480 ± 641 101 ± 4.2 1.0 ± 0.0

Rainfed CROPGRO 8,343 ± 2410 2,488 ± 1486 135 ± 5.0 0.84 ± 0.08

HERMES 7,145 ± 1804 4,057 ± 1195 101 ± 4.2 0.86 ± 0.09

Increased Irrigated CROPGRO 15,481 ± 1140 6,527 ± 920 139 ± 2.2 1.0 ± 0.0

T and CO2 HERMES 13,098 ± 1083 7,747 ± 860 101 ± 4.2 1.0 ± 0.0

Rainfed CROPGRO 12,404 ± 2545 4,372 ± 1938 136 ± 4.5 0.90 ± 0.07

HERMES 11,427 ± 1971 6,629 ± 1526 101 ± 4.2 0.90 ± 0.03

irrigated baselines. Therefore, soybean production is pre-

dicted to be maintained under irrigated condition in the

future, regardless of RCPs. These results indicated that,

in spite of projected higher air temperature increase under

RCP8.5 (4.5 ˚C), the projected higher CO2 concentration

(936 ppm) still offset the more negative effects of high

temperature on soybean compared to simulations under

RCP4.5 (538 ppm and 2.5 ˚C increase). Comparing the

two modules, the CROPGRO produced slightly higher

increase in biomass (8–10% vs. 1–6%) and yield (4–9%

vs. 0–4%) from their baselines under RCP4.5 and RCP8.5

(Table 4).

A further analysis of annual yield and biomass in response

to climate change (averaged from the 40 GCM projections)

was presented using cumulative distribution functions (CDF)

in Figures 5 and 6. Under no water stress (fully irrigated) con-

ditions, more increases in biomass (Figure 5) and seed yield

(Figure 6) were simulated across the 17 yr by the two mod-

ules with CO2 elevation for RCP8.5 than for RCP4.5, com-

pared with their respective 2002–2018 baselines. HERMES

generally produced lower biomass but higher seed yield than

CROPGRO across the 17 yr under the same climate change

scenarios, which was consistent across the 40 GCM projec-

tions (Figures 3 and 4).

The simulated growing season evapotranspiration (ET)

generally increased from the baselines for most (>90%)

GCMs (Figure 7), but less increase in ET was simulated by the

two modules with elevated CO2 than without elevated CO2,

which could be due to CO2–induced stomatal closure (Islam,

Ahuja, Garcia, Ma, & Saseendran, 2012; Lal et al., 1999;

Wang et al., 2015). The increased ET with no water stress

and under baseline CO2 levels was mainly associated with the

increased air temperature (Figure 7). The higher ET simulated

by the two modules under RCP4.5 and RCP8.5 suggested that

air temperature had more impact on ET than CO2. On the

other hand, the slightly lower simulated ET under RCP8.5

than RCP4.5 indicated that CO2 effects on stomatal closure

partially offset the air temperature effect on ET. Although

CROPGRO predicted slightly lower ET than HERMES, both

modules produced very similar ET responses to increase in air

temperature and CO2 under the RCP4.5 and RCP8.5 pathways

(Figure 7).
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F I G U R E 4 Violin distributions of simulated average soybean yield (kg ha−1) from 2083 to 2099 for the 40 general circulation model (GCM)

projections by CROPGRO (light gray) and HERMES (gray) in response to combined factors of water stress ([a and b] No_WS and [c and d] Rainfed),

temperature increase (2.5 ˚C for RCP4.5 and 4.5 ˚C for RCP8.5) and CO2 levels (current CO2 level: [a and c] No_eCO2, [b and d] elevated CO2 levels

of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baseline (dots) was averaged from the simulated soybean biomass under current climate

condition from 2002 to 2018 with CO2 level of 395 ppm in Raleigh, NC. (The three insider lines from bottom to top in violins present the 25th, 50th,

and 75th percentiles across the 40 GCM projections, respectively). Legend is applicable to all plots. RCP= Representative Concentration Pathways

No significant effects of elevated CO2 concentration on

soybean maturity were simulated by both modules (Table 4).

HERMES simulated much earlier maturity dates than CROP-

GRO under both RCP4.5 (Δ = 15 vs. 2 d) and RCP8.5

(Δ = 26 vs. 4 d), compared with their respective base-

lines (Table 4, Figure 8). The average soybean matu-

rity date simulated by CROPGRO was 137 and 139 d

after planting for RCP4.5 and RCP8.5, respectively, com-

pared to 112 d after planting and 101 d after planting

by HERMES (Table 4). Across the 40 GCM projections,

HERMES-simulated maturity date showed greater varia-

tion (SD = 4 d) CROPGRO (SD = 2). Crop water stress

showed no significant effects on simulated soybean matu-

rity by HERMES, while CROPGRO predicted that matu-

rity dates were 3–4 d later under irrigated than rainfed

conditions.

3.3 Projected climate change simulation
under rainfed conditions

Without elevated CO2 concentration, CROPGRO simulated

a 19% increase in both average biomass and average yield

under RCP4.5 due to a 22% increase in projected precipita-

tion from 2083 to 2099, as influenced by the lower predicted

crop water stress (WS) for the GCMs (average WS = 0.86–

0.90) than for the baselines (average WS = 0.82; Table 4,

Figures 3 and 4). Under RCP8.5, CROPGRO simulated a 3%

increase in biomass but a −12% decrease in yield. On the

other hand, HERMES simulated decreases in both biomass

and yield under both RCPs with −0.2% reduction in biomass

and −6.7% reduction in yield under RCP4.5 and −19.6 and

−25.1% reductions under RCP8.5, compared with the rain-

fed baselines. These trends were consistent among almost all
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F I G U R E 5 Cumulative distribution function (CDF) of simulated average soybean biomass (kg ha−1) from the 40 general circulation model

(GCM) projections across 2002 to 2018 by CROPGRO (solid lines) and HERMES (dot lines) in response to combined factors of water stress ([a and

b] No_WS [Irrigation], and [c and d] Rainfed), temperature increase (2.5 ˚C for RCP45 and 4.5 ˚C for RCP85) and CO2 levels (current CO2 level [a

and c]: No_eCO2, [b and d] elevated CO2 levels of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baselines (blue lines) was obtained

from the simulated biomass under current climate condition from 2002 to 2018 with CO2 level of 395 ppm. Legend is applicable to all plots. RCP =
Representative Concentration Pathways

the 40 GCM projections, where more reduction in biomass

and seed yield was simulated by HERMES (−14 to −30%)

than by CROPGRO (−4 to −17%) under both RCP4.5 and

RCP8.5.

With elevated CO2 concentration under RCP4.5 and

RCP8.5, both modules simulated higher average soybean

biomass (20–44%, Figure 3) and seed yield (13–55%, Fig-

ure 4) for rainfed conditions compared with the rainfed base-

lines, which was higher than that under irrigated conditions

(0–10%), compared with their respective baselines without

CO2 elevations (Figures 3 and 4). These results showed more

compensation effects from elevated CO2 concentration for

soybean reduction due to increased air temperature under rain-

fed conditions than under irrigated conditions. Under rain-

fed conditions, CROPGRO predicted much greater increase

in biomass (50 vs. 26%) and yield (55 vs. 22%) than HER-

MES (Table 4). Both modules simulated higher increase in

average biomass and yield for RCP8.5 than for RCP4.5 under

both rainfed (54 vs. 24%) and irrigated conditions (8 vs.

5%). These results indicated that, in spite of projected higher

air temperature increase for RCP8.5 (4.5 ˚C), the projected

higher CO2 concentration (936 ppm) still offset the negative

effects of high temperature relative to RCP4.5 (538 ppm and

2.5 ˚C increase).

As shown in Figures 5 and 6, under rainfed conditions

without elevated CO2, the simulated biomass and seed yield

were reduced due to increased air temperature (RCP4.5 and

PCP8.5) in wet years but were increased by the projected

higher precipitation (Figure 3) in dry years. When CO2 con-

centration was elevated, the simulated biomass and seed yield

were slightly reduced in a few years (<20%) when projected

precipitation was low, but they were significantly increased in

other years (>80%) due to the combined effects of increased

CO2 and precipitation.

As expected, simulated seasonal evapotranspiration (ET)

was generally lower under rainfed conditions (Figure 7) than

that under irrigated conditions in both modules and under both

RCPs. The increased ET under rainfed conditions was mainly

associated with increased precipitation and air temperature

under RCP4.5 and RCP8.5 (Figure 3) compared to the rain-

fed baselines. Although both modules simulated similar ET

and ET responses to increased air temperature and CO2 under

RCP4.5 and RCP.8.5, CROPGRO predicted lower transpira-

tion but higher evaporation than HERMES. HERMES tran-

spiration predictions were higher mainly due to higher sim-

ulated leaf area index in the growing seasons than CROP-

GRO, which allowed less partitioning of total potential ET

into potential surface evaporation.
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F I G U R E 6 Cumulative distribution function (CDF) of simulated average soybean seed yield (kg ha−1) from the 40 general circulation model

(GCM) projections across 2002 to 2018 by CROPGRO (solid lines) and HERMES (dot lines) in response to combined factors of water stress ([a and

b]No_WS [Irrigation], a and b, and [c and d] Rainfed), temperature increase (2.5 ˚C for RCP4.5 and 4.5 ˚C for RCP8.5) and CO2 levels (current CO2

level: [a and c] No_eCO2, [b and d] elevated CO2 levels of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baselines (blue lines) was

obtained from the simulated biomass under current climate condition from 2002 to 2018 with CO2 level of 395 ppm. Legend is applicable to all plots.

RCP = Representative Concentration Pathways

4 DISCUSSION

Although both modules were calibrated and validated with

experimental data from 2015 to 2018, there were consider-

able differences between the two using historical data from

2002 to 2018 under irrigated conditions. Compared to exper-

imental averages under ambient air temperature, CROPGRO

simulated 17% higher biomass and 7% lower yield, whereas

HERMES simulated almost the same biomass but 10% higher

yield in 2002–2018 baseline runs. The differences were mag-

nified under rainfed conditions with CROPGRO simulating

less than half of the irrigated yield (55% reduction) and

HERMES simulating only 27% reduction. Therefore, caution

should be taken in interpreting projected soybean yield under

rainfed conditions as no experimental results were available

under rainfed conditions to validate either module. However,

the responses of both modules to climate change should be

valid, as they agree with literature values (Bao, Hoogenboom,

McClendon, & Urich, 2015; Bao, Hoogenboom, McClendon,

& Paz, 2015).

Projected climate change effects on soybean growth and

phenology differed greatly between irrigation and rainfed con-

ditions in both modules. The changes in soybean response to

climate change was larger under rainfed conditions than under

irrigated conditions due to a projected 22% increase in pre-

cipitation (Figure 2a) and increased CO2 by Year 2100. Simi-

lar results were reported by Alexandrov, Eitzinger, Cajic, and

Oberforster (2002), who using CROPGRO in Austria, found

that warming temperature in combination with increased pre-

cipitation would increase soybean yield. However, a drier cli-

mate in the future would limit the benefit from CO2 eleva-

tion and reduce soybean yield, as reported for the U. S. Mid-

west (Jin, Ainsworth, Leakey, & Lobell, 2018; Schauberger

et al., 2017). The positive effect of CO2 elevation also com-

pensated more for the negative effect of temperature increase

under rainfed conditions than irrigation conditions (Table 4,

Figures 3 and 4).

Although the CROPGRO and HERMES modules use dif-

ferent CO2 assimilation algorithms and temperature response

functions (Figure 1; Sima et al., 2020), both produced sim-

ilar responses of soybean yield to climate change scenarios

under RCP4.5 and RCP8.5 (Figures 3 and 4), which was con-

sistent with previous results on evaluating several CO2 assim-

ilation algorithms with FACE experiments (Nendel et al.,

2009). Under rainfed conditions, however, CROPGRO simu-

lated greater climate change effects on seed yield and biomass

than HERMES under both RCP4.5 (50 vs. 26%) and RCP8.5

(55 vs. 22%), indicating greater sensitivity of CROPGRO to



MA ET AL. 1361

F I G U R E 7 Violin distributions of simulated average seasonal evapotranspiration (ET, cm) from 2083 to 2099 for the 40 general circulation model

(GCM) projections by CROPGRO (light gray) and HERMES (gray) in response to combined factors of water stress ([a and b] No_WS [Irrigation],

and [c and d] Rainfed), temperature increase (2.5 ˚C for RCP4.5 and 4.5 ˚C for RCP8.5) and CO2 levels (current CO2 level: [a and c] No_eCO2, [b

and d] elevated CO2 levels of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baseline (dots) was averaged from the simulated soybean

biomass under current climate condition from 2002 to 2017 with CO2 level of 395 ppm. (The three insider lines from bottom to top in violin present

the 25th, 50th, and 75th percentiles, respectively). Legend is applicable to all plots. RCP = Representative Concentration Pathways

reduced water stress by increased precipitation and elevated

CO2 (Table 4). Under irrigated conditions without CO2 ele-

vation, HERMES simulated greater decrease in biomass and

seed yield compared to its baselines than CROPGRO (−19

to −26% vs. −3 to −9%), suggesting greater sensitivity to

temperature increase in HERMES. Across the 40 GCM pro-

jections, both modules simulated higher variability among

these GCMs under rainfed condition than irrigation condi-

tions partly due to the greater variability in projected precip-

itation among the GCMs (Figure 2). Multiple crop models

along with different GCMs can potentially reduce the uncer-

tainty of the predicted climate change effects (Battisti et al.,

2017; Maioranoa et al., 2017).

The variability of projected climate change effects on soy-

bean production across the 40 GCM projections was lower

for CROPGRO than for HERMES under irrigated condi-

tions (e.g., Figures 3–6) and were similar under rainfed

conditions. In addition, much higher variability in simu-

lated biomass and yield was observed among years than

among GCMs. These results were generally consistent with

Asseng et al. (2013) and Wang et al. (2017), who found

lower variability among different models than among GCMs,

but high uncertainties in models under extreme climatic

conditions.

The simulated reduction in soybean biomass and yield due

to increased air temperature was associated more with the

reduced leaf photosynthesis rate than shortened growing sea-

son in the two modules (Figure 2) (Ruiz-Vera et al., 2013).

For example, with obviously earlier maturity date simulated

by HERMES under RCP4.5 and RCP8.5 (Figure 8), higher

soybean production relative to the baseline was with nor-

mal maturity date (Figures 3 and 4). This result was mainly

due to the increased leaf photosynthesis rate with elevated

CO2 that compensated for the short growing season due to

increased air temperature (Figure 2). Similar to previous cli-

mate change effect projections, only CO2 effects on photosyn-

thesis and transpiration were considered in the modules, and

their effects on other physiological processes (i.e., phenology

development) and interactions with high air temperature (i.e.,

on stomatal conductance and intercellular CO2 concentration)

should also be included (Castro et al., 2009; Ruiz-Vera et al.,

2013).
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F I G U R E 8 Violin distributions of simulated average soybean growing duration (days after planting, DAP) from 2083 to 2099 for the 40 general

circulation model (GCM) projections by CROPGRO (light gray) and HERMES (gray) in response to combined factors of water stress ([a and b]

No_WS [Irrigation], and [c and d] Rainfed), temperature increase (2.5 ˚C for RCP4.5 and 4.5 ˚C for RCP8.5) and CO2 levels (current CO2 level: [a

and c] No_eCO2, [b and d] elevated CO2 levels of 538 ppm for RCP4.5 and 936 ppm for RCP8.5: eCO2). The baseline (dots) was averaged from the

simulated soybean growing duration under current climate condition from 2002 to 2017 with CO2 level of 395 ppm. (The three insider lines from

bottom to top in violins present the 25th, 50th, and 75th percentiles across the 40 GCM projections, respectively). Legend is applicable to all plots.

RCP =Representative Concentration Pathways

Although there was much less increase in biomass and

yield for both RCP4.5 and RCP8.5 under irrigated condi-

tions compared to baselines, simulated biomass and yield

were much higher and more stable than those under rain-

fed conditions (Table 4). Therefore, irrigation remained an

effective mitigation strategy. On the other hand, neither mod-

ule simulated sowing date effects (plus or minus 2 wk from

current dates) on soybean production under both RCPs and

under either rainfed or irrigation conditions, which might be

caused by the GCM projections and calibrated crop parame-

ters (Islam, Ahuja, Garcia, Ma, Saseendran, & Trout, 2012;

Ma et al., 2017). However, shifting sowing dates by a month

showed inconsistent results between the two modules. For

example, without CO2 fertilization effects under RCP4.5,

advancing sowing date for 1 mo decreased soybean yield

in both modules, but delaying it for 1 mo increased soy-

bean yield by 10% in CROPGRO (19% at normal sow-

ing date) and by 4% in HERMES (−7% at normal sowing

date). Under RCP8.5, neither advancing nor delaying sow-

ing dates was effective in mitigating climate change effects

with yield decreasing by 11–31% compared to baseline

scenarios.

The present model simulation may be specially associated

with the cultivar parameters and local weather conditions used

in this study, as genetic variation in the response of soy-

bean to temperature increase has been reported (e.g., Kumagai

& Sameshima, 2014; Salem, Kakani, Koti, & Reddy, 2007).

More experiments with different cultivars and climate condi-

tions are needed to evaluate the models and reduce the uncer-

tainties associated with the crop parameters. Historical radi-

ation and relative humidity data are used for model runs as

they are not predicted by any of the GCMs; however, the

interactions between temperature and radiation may affect the

results (Malone et al., 2011; Mera, Niyogi, Buol, Wilkerson,

& Semazzi, 2006). Furthermore, since both modules under-

predicted soybean yield reduction (Sima et al., 2020), the

projected yield decrease due to elevated air temperature may

be under-estimated.
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5 CONCLUSIONS

Using 40 GCM projections and two crop modules (CROP-

GRO and HERMES) in RZWQM2, we demonstrated that

soybean production would likely increase by 2100 under

both RCP4.5 and RCP8.5 when considering CO2 fertilization

effects. Without CO2 effects, soybean seed yield was simu-

lated to decrease except for an increase of 19% in simulated

rainfed yield by CROPGRO under RCP4.5. Simulated vari-

ability was higher under rainfed conditions than under irri-

gated conditions, higher among years than among GCMs,

and higher by HERMES than by CROPGO. Due to much

higher simulated yield under irrigation, supplementary irriga-

tion may be an effective mitigation strategy to maintain soy-

bean yield. In contrast, advancing or delaying sowing dates

had little effect on soybean production in the region. Better

phenology responses to temperature are needed in HERMES.

Since both modules in RZWQM2 were calibrated with fully

irrigated soybean data, further work is also needed to evaluate

the responses of soybean growth to water stresses under ele-

vated air temperature using experimental data to assure accu-

rate simulation of the interactions between soil water content

and air temperature.
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